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Abstract The cosmopolitan reed grass Phragmites

australis (Poaceae) is an intensively studied species

globally with a substantial focus in the last two

decades on its invasive populations. Here we argue

that P. australis meets the criteria to serve as a model

organism for studying plant invasions. First, as a

dominant species in globally important wetland habi-

tats, it has generated significant pre-existing research,

demonstrating a high potential for funding. Second,

this plant is easy to grow and use in experiments.

Third, it grows abundantly in a wide range of

ecological systems and plant communities, allowing

a broad range of research questions to be addressed.

We formalize the designation of P. australis as a

model organism for plant invasions in order to

encourage and standardize collaborative research on

multiple spatial scales that will help to integrate

studies on the ecology and evolution of P. australis

invasive populations, their response to global envi-

ronmental change, and implications for biological

security. Such an integrative framework can serve as

guidance for studying invasive plant species at the

population level and global spatial scale.

Keywords Genome size � Global climate change �
Global research network � Herbivory � Hybridization �
Ploidy level

Introduction

Phragmites australis (Cav.) Trin. ex Steud. (formerly

P. communis, common reed, Poaceae family) has been

mentioned as a model organism for plant invasions by

a number of researchers because of its near global

distribution (Clevering and Lissner 1999), well-known

invasion history in North America (Saltonstall 2002),

ease of detection using aerial or satellite imagery

(Bhattarai and Cronin 2014), high genetic and kary-

ological diversity (Meyerson et al. 2016), occurrence

as multiple lineages and genotypes along latitudinal or
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Zámek 1, 252 43 Průhonice, Czech Republic

P. Pyšek
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climatic gradients (Cronin et al. 2015; Hughes et al.

2016), and for its array of traits that are easily

measured and highly variable depending on genotype

and/or environmental conditions (e.g., Meyerson et al.

2000a, b; Achenbach et al. 2013; Mozdzer et al. 2013;

Guo et al. 2013). Here we formalize the recognition of

P. australis as a model organism for plant invasions by

adapting the criteria outlined by Kueffer et al. (2013)

who suggested that using model systems in invasion

science could facilitate and strengthen global collab-

oration and allow investigators to address fundamental

questions in invasion science through integrative

research.

The use of model organisms in plant research, such

as Arabidopsis thaliana, is well established and highly

valued because a useful model organism is easily

manipulated, genetically tractable, and about which

much is already known, thus allowing researchers to

rapidly accumulate comprehensive knowledge of the

whole plant. Model plant species allow researchers to

test hypotheses quickly and efficiently thereby func-

tioning as a reference system for other plant systems

and more quickly advancing empirical science—a

particularly important undertaking for invasion ecol-

ogy and research that seeks to predict the effects of

global change. Our interpretation of a model species

follows that of Kueffer et al. (2013), who suggested

that invasion science can profit from in-depth research

of invasions of particular taxa (‘model organisms’) or

at a particular site (‘model ecosystems’), and from the

integration of diverse information on such taxa or

sites. Developing model systems in invasion science

has become increasingly possible due to recent

accumulation of comprehensive datasets on selected

invasive species and research focused on particular

model systems will help to identify processes relevant

for understanding invasions, and identifying their

underlying mechanisms

Kueffer et al. (2013) adapted the following criteria

for identifying model organisms in invasion science: a

model organism should (1) be characterized by the

existence of substantial pre-existing research, tools

and knowledge; (2) readily lend itself to research and

use in experiments; (3) represent a wide range of

systems and species; and (4) facilitate high versatility

for research and funding. We assert that P. australis

readily meets all these criteria and we provide

evidence to support each point below. This is not

meant to be an exhaustive review of the published

literature on P. australis. Instead, it is meant to be a

concise argument, with key examples, for why P.

australis makes is a good model species.

Substantial research, tools and knowledge exist

for Phragmites australis

Phragmites australis is arguably among the world’s

most studied plants and is cited by Pyšek et al. (2008)

as the third most studied plant species over the period

1980–2006 and by Hulme et al. (2013) as being among

the five most studied invasive species globally. There

is a wealth of information on its ecophysology and

population dynamics from the native European range

where it has been subject of intensive research effort

and international projects since 1970s (Dykyjová et al.

1973; Tscharntke 1992; Čı́žková et al. 1996; Brix

1999). Its introduction and invasion history is rela-

tively well known, especially in North America

(Chambers et al. 1999; Saltonstall 2002). Numerous

recent reviews have synthesized the ecology, evolu-

tion, management (Hazelton et al. 2014), costs (Martin

and Blossey 2013), and benefits (Kiviat 2013) of this

species. The Web of Science database yielded 4142

published papers for the search term ‘‘Phragmites’’

and 3503 for Phragmites australis as the ‘‘topic’’ from

1950 to 2016 (Fig. 1). More generally, Google Scholar

returned[25,000 hits for the search term ‘‘Phragmites

australis’’ indicating a broad exchange of knowledge

through news outlets, management and academic

literature.

One strong argument for P. australis to qualify as

a suitable model species is that this plant is

researched by an order of magnitude more inten-

sively than other notorious plant invaders and

candidate model species (Table 1). Although not all

the information that is available refers to its invasion,

the research so far has accumulated a solid knowl-

edge base from a variety of disciplines. A brief

inspection of the 1033 case studies returned by the

WoS search reveals that in addition to the most

represented research areas such as environmental

sciences, ecology and conservation (43 %), plants

sciences (36 % of all papers), and marine and

freshwater biology (28 %) are well represented.

More practically oriented fields like engineering

(9 %), agriculture (6 %), microbiology and biotech-

nology (6 %) or research in water resources (5 %)
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are also a part of the literature on P. australis.

Another feature that makes P. australis a strong

candidate for a model species is that it is represented

on all continents except Antarctica, and both native

and invasive populations have very broad geographic

ranges. Other prospective model invasive species

listed in the Table 1 are geographically limited in

one way or another, making them rather difficult, if

not impossible, to use to address questions related to

global macroecological patterns or, e.g., global

change.

Phragmites australis is an easily recognizable plant

species whose lineages and subspecies in North

America can often be distinguished based on mor-

phology but sometimes require genetic confirmation.

The genetic and morphological tools to rapidly

identify the origin and genotypes of P. australis were

published by Saltonstall (2002, 2003a, b), Saltonstall

et al. (2004). These tools led to a rapid and exponential

increase in the possibilities for research on this

species, resulting in an ever increasing body of work

by researchers from around the globe working to

identify lineages, subspecies, haplotypes (Saltonstall

2003a, b; Saltonstall et al. 2004; Meyerson and Cronin

2013), and hybrids of P. australis (Saltonstall et al.

2016, this issue; Lambertini et al. 2012; Lambert et al.

2016, this issue; Meyerson et al. 2010a, b, 2012). More

recently, the full plastid genome of P. australis has

been published on the NCBI website (http://www.

ncbi.nlm.nih.gov/bioproject/174737).

The great research intensity makes P. australis

rather exceptional among invasive species in that

there is a large body of literature from its native

range (e.g. Brix 1999). As shown recently in a

thorough comparison of 26 plant species considered

among the world worst invaders, data from native

ranges are generally rather scarce (Parker et al.

2013). Phragmites australis is widely studied in both

its native and introduced ranges for its ability to

rapidly colonize new areas (Chambers et al. 1999)

and efficiently uptake nutrients (Brix 1994; Meyer-

son et al. 1999, 2000a, b). Comparisons of native

and invasive populations have also been made with

regard to genetic and karyological diversity (Clev-

ering and Lissner 1999; Saltonstall 2002; Lambertini

et al. 2006, 2012; Meyerson et al. 2016, this issue),

wildlife habitat (Kiviat 2013), competitive ability

(Holdredge et al. 2010), trophic interactions

(Tscharntke 1992; Cronin et al. 2015; Allen et al.

2015; Hughes et al. 2016; Bhattarai et al. in review)

and many other factors that may be related to this

species’ invasiveness.

Fig. 1 Number of publications over time for journal articles

with Phragmites australis as the main research topic, as

indicated by the species name used in the paper title

(n = 1019, Web of Science Core Collection, Title: Phragmites

australis OR Phragmites communis, 18 December 2015)
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Phragmites australis is easy to research and use

in experiments

Primary research

Phragmites australis is highly adaptable and can grow

in a range of ecosystems including coastal marshes,

inland lakes and rivers, mountains, deserts and urban

areas (Packer et al. 2016). It is readily identified using

both aerial photographs, including historic images

(Bhattarai and Cronin 2014), LiDAR and satellite

imagery (Gilmore et al. 2008). Consequently, P.

australis is ideally suited for remote sensing and

landscape-level studies. Because different lineages

(Swearingen and Saltonstall 2010) and hybrids (Lam-

bertini et al. 2012) can have distinct morphological

and color traits, they are also distinguishable in the

field.

Phragmites australis is readily propagated by

seed, rhizome or stem node (Haslam 1971a, b;

Meyerson et al. 2014) for greenhouse, common

garden or growth chamber experiments and can be

grown in a variety of substrates including field soils

and commercial sand and soil mixes. While some

populations are hardier than others, P. australis

tolerates a wide range of winter and summer

temperatures and is therefore amenable to use in

multiple common gardens across a wide range of

latitudes and climates (Bhattarai et al. in review).

Phragmites australis is also relatively easy to find

growing wildly in places where there is adequate

moisture. Multiple genotypes and lineages of P.

australis grow sympatrically in Europe, Asia and

North America (Saltonstall 2002; Lambertini et al.

2012; Lambert et al. 2016, this issue; Meyerson and

Cronin 2013; Meyerson et al. 2009; Cronin et al.

Table 1 Comparison of Phragmites australis with some of other world’s major invasive plant species, for the major criteria that

make a species a suitable model organism (see text for details)

Species Life history Pre-existing

research

Size of

the native

range

Size of the

invaded

range

Invaded habitats

Phragmites australis

(Poaceae)

Perennial grass 1033 7 9 Freshwater wetland, riparian

habitats, coastal marshes,

disturbed sites

Typha latifolia

(Poaceae)

Perennial grass 265 14 6 Freshwater wetland, marhes,

coastal estuaries

Phalaris arundinacea

(Poaceae)

Perennial grass 210 8 13 Forests, freshwater wetland,

riparian habitats

Bromus tectorum

(Poaceae)

Annual grass 268 9 4 Grassland, scrubland, rangeland

Fallopia japonica

(Polygonaceae)

Polycarpic perennial

herb

86 1 4 Woodland, forest edges, riparian

habitats, wetlands, disturbed sites

Heracleum

mantegazzianum

(Apiaceae)

Monocarpic

perennial herb

67 1 8 Riparian habitats, grassland, forest

edges, disturbed sites

Alliaria petiolata

(Brassicaceae)

Annual herb 122 9 3 Forests and forest edges, grassland,

riparian habitats

Centaurea stobe

(Asteraceae)

Polycarpic perennial 47 4 5 Grassland, riparian habitats,

rangeland, woodland

WoS Core Collection search was used as a measure of research intensity (as of 27 February 2016); by restricting the search criterion

to the plant name in the title of the paper this search refers to case studies rather than to any mention about the species. The most

common synonyms were also included in the search (i.e. Phragmites communis, Baldingera arundinacea, Reynoutria japonica, and

Alliaria officinalis). Size of the native and invaded range is expressed as the number of regions (n = 32) as given by Weber (2003), in

which the species is native or naturalized, respectively

Although the information about the number of invaded versus native regions may be outdated in this data source, not reflecting the

last decade of research, it is kept here for comparative purpose. Invaded habitats are taken from Weber (2003) and updated for P.

australis
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2015) and there are increasing reports of wild hybrids

(Wu et al. 2015; Saltonstall et al. 2014; Saltonstall

et al. 2016, this issue; Lambertini et al. 2012;

Lambert et al. 2016, this issue). Additionally, P.

australis can be easily interbred by hand within and

between lineages (Meyerson et al. 2010a, b) or

hybridized with other Phragmites species (C. Lam-

bertini, unpublished data).

Furthermore, given the advantages described

above (significant amount of available data from

genetic to ecosystem level, high genetic and kary-

ological diversity, easy to use, globally distributed,

etc.), P. australis is a logical choice for experimental

tests of ecological theory in plant invasions. For

example, Cronin et al. (2015) and Allen et al. (2015)

found support for the enemy release hypothesis

(ERH) because levels of herbivory were significantly

lower on the introduced genotype in North America

than on the same genotype in the native European

range. Interestingly, there was no evidence that

release from natural enemies resulted in the evolution

of reduced defenses in the invaded range that would

support the evolution of increased competitive ability

(EICA) hypothesis (Blossey and Nötzold 1995). In

addition, the complex interactions between P. aus-

tralis and its herbivores, including multiple species

of introduced stem-galling moths (Lipara) from

Europe, suggest that an invasional meltdown (Sim-

berloff and Von Holle 1999) may be underway in

North America. Predicting potential niche shifts by

invasive species in their introduced ranges is widely

recognized as critically important to assessing the

establishment and spread of invaders (Broennimann

et al. 2007). Using environmental niche models for

data on two lineages of P. australis in their native

and introduced ranges, Guo et al. (2013) found

evidence for a niche shift in two lineages due to

recent changes in precipitation and temperature and

suggested that ongoing human disturbance will

continue to alter niches in the native and introduced

ranges.

Management and ecosystem restoration

Restoration of degraded ecosystems has been

described as the ‘‘acid test’’ of ecological knowledge

(Egan 2001) making management efforts to remove

invasive plants and restore native communities both a

practical matter and a research opportunity. A number

of studies have shown that the negative effects of

invasive P. australis are reversible for some plant, fish

and insect communities (Farnsworth and Meyerson

1999; Able et al. 2003; Gratton and Denno 2006;

Hunter et al. 2006; Dibble et al. 2013; Dibble and

Meyerson 2012, 2013, 2016, this issue). Many

restoration and management efforts for P. australis

have used mechanical and chemical approaches and

have been long-term and large-scale (Marks et al.

1994; Hazelton et al. 2014), yielding a wealth of

information. Arthropod biological control agents for

invasive P. australis genotypes have been considered

but a growing body of ecological and evolutionary

literature suggests that introductions of these species

would be potentially catastrophic to existing native P.

australis genotypes (Cronin et al. 2016, this issue). At

the same time, new management tactics using soil

microbes are being explored (see below). Therefore,

using P. australis as a model system for invasive plant

management associated with restoration offers oppor-

tunities to improve design, implementation and

assessment on the ground. Assessments that include

economic costs over time (Chambers et al. 1999;

Martin and Blossey 2013; Hazelton et al. 2014) and

empirical evidence of restoration outcomes across

trophic levels may ultimately assist in prioritization of

restoration efforts, better monitoring and ecological-

indicator development.

Phragmites australis occurs in a wide range

of ecosystems with diverse food webs

Habitats and biogeography

The thousands of published research papers on P.

australis across many ecosystem types and continents

(Fig. 1) and the restoration efforts aimed atmanaging its

stands clearly establish this species as representative in

natural, managed and urban systems. It is especially

amenable to diverse types of research from both

scientific and management-focused agencies. Below

we provide examples of published research and man-

agement efforts in order to demonstrate future potential.

Phragmites australis and its associated fauna and

flora represent a wide range of habitats with diverse

biological communities across continents and have

been studied in detail for decades (Haslam 1971a, b).
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For example, in North America three different

lineages of P. australis (sensu Saltonstall 2002)

colonize both coastal tidal freshwater and brackish

systems (Meyerson et al. 2000a, b), and are also found

inland inhabiting ponds, lakes and rivers, inland

freshwater marshes (even in desert systems; Lambert

et al. 2016, this issue), at both high and low elevations

(Packer et al. 2016), urban, suburban and other highly

disturbed ecosystems such as roadsides, along railway

corridors and other ‘‘waste places.’’

Increasingly, biogeographic approaches at large

spatial scales are being applied to invasion research

(Colautti et al. 2014), and this trend is also obvious for

P. australis. For example, Cronin et al. (2015) studied

populations of P. australis in its native range in

Europe (from Norway to Portugal) and both intro-

duced and native populations in North America (from

New Brunswick to Florida) across more than 19

degrees of latitude on each continent. Comparing the

native and introduced lineages in North America, they

found non-parallel gradients in herbivory that suggests

the strength of enemy release varies with latitude.

Such a result would not have been detected at a more

restricted spatial scale. Similarly, Bhattarai et al. (in

review) used two common gardens representing a

17-degree latitudinal spread to test whether latitudinal

clines in plant defense, palatability, and plasticity

could be detected across different P. australis geno-

types. They found latitudinal clines to be common for

many traits and for more than a third of those traits,

clines were non-parallel for the native and introduced

genotypes, supporting the earlier findings of Cronin

et al. (2015) and suggesting evolution of the intro-

duced genotype in the novel environment over a short

time scale (\200 years). Bhattarai et al. (in review)

also found that invasive genotypes were more plastic

than native genotypes and that plasticity for native

genotypes increased with decreasing latitude. In the

Czech Republic, Bastlová et al. (2006) conducted a

common garden study using populations from six

European countries and found an inverse relationship

between latitude and P. australis traits (e.g., height,

biomass) except for SLA, which had a positive

relationship with latitude.

There are other globally or widely distributed large-

statured invasive grasses such as Arundo donax

(Lambert et al. 2010), Miscanthus spp., and many

bamboo species (Canavan et al. 2016) that are

ecologically, agriculturally, economically, and

culturally important. Like P. australis, these grasses

provide both ecosystem services such as water purifi-

cation, erosion control, biofuels, and construction

materials (Kiviat 2013) and present management

challenges where they are considered invasive or

weedy (Hazelton et al. 2014). The significant research

and management data and future studies on P.

australis should greatly inform the management of

these and other pervasive large-statured invasive

grasses.

Genetic, karyological, and epigenetic diversity

The seminal series of papers on the genetics of P.

australis by Saltonstall (2002, 2003a, b) helped to

usher in the ability of researchers to use this species for

studies on the role of intraspecific genotypes in

invasions, evolution, hybridization, as well as the

interactions of genetics and the environment. Ploidy

level in P. australis has been widely reported (e.g.,

Clevering and Lissner 1999; Pellegrin and Hauber

1999; Saltonstall et al. 2007) but no significant

differences in genome size between native and intro-

duced P. australis in North America were detected

(Saltonstall et al. 2007). More recently, this work has

extended to detailed global studies of P. australis

genome size and ploidy levels which show significant

differences between native and introduced lineages

(Suda et al. 2014; Meyerson et al. 2016, this issue).

Because P. australis is relatively easy to hybridize

under controlled conditions (Meyerson et al. 2010a,

b), studies of intraspecific genetic and genomic

heritability (that also control for phylogenetic rela-

tionships) and the relationships of genotype, genome

size and ploidy level to plant traits and species

interactions (such as herbivory, e.g., Cronin et al.

2015; Allen et al. 2015; Meyerson et al. 2016, this

issue) can be undertaken in the laboratory, common

garden and field. Additionally, because high

intraspecific genetic diversity, including hybrids, can

be found in the wild, simultaneous field and garden

studies can be designed to disentangle the relative

contributions of genetics, the environment and species

interactions to plant success, trait expression and

ecosystem effects of invasion. The influence of

epigenetics on plant invasions is increasingly being

explored for invasive species (e.g., Prentis et al. 2013;

Bossdorf et al. 2008) and P. australis offers the
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opportunity to explore epigenetics in the context of

other genetic and genomic traits (see Douhovnikoff

and Spens 2016, this issue).

Microbial diversity

Increasingly, invasion research is focusing on the

fungal and bacterial communities that may be facil-

itating or hindering plant invasions. For P. australis,

microbial communities are being studied in earnest,

especially because of the opportunity to conduct

research that compares genotypic and intraspecific

difference from populations that grow sympatrically

in the wild. For example, studies in North America

comparing native and invasive P. australis genotypes

found that soils of both were dominated by the

oomycete Pythium, sp. but differed in species diversity

and abundance (Nelson and Karp 2013). Some

microbial taxa may more negatively impact native

than invasive P. australis in North America (Crocker

et al. 2015). Interesting new work on fungal endo-

phytes indicates that reducing beneficial and increas-

ing harmful fungal endophytes in invasive P. australis

could eventually result in a novel method to control P.

australis invasions (Kowalski et al. 2015; Clay et al.

2016, this issue; Soares et al. 2016, this issue).

Phragmites australis has also been shown to be

facultatively mycorrhizal (Oliveira et al. 2001), sup-

porting arbuscular mycorrhizal fungi (AMF, Harley

and Harley 1987), but lacking ectomycorrhizal fungi

(Oliveira et al. 2001). AMF colonization is thought to

benefit P. australis by shortening germination length,

increasing seedling growth rates, aiding nutrient

uptake (Wu et al. 2014), and reducing stressful

environmental conditions (Al-Garni 2006; Wu et al.

2014; Zhang et al. 2014).

Archaeal and bacterial communities among differ-

ent P. australis genotypes have received less attention.

Yarwood et al. (2016, this issue) sampled four sites on

the Choptank River in the Chesapeake Bay, USA that

included both the native and introduced genotypes of

P. australis. They found that while bacterial biomass

and composition did not significantly differ between

genotypes, the archeael community composition and

the number of copies of the 16s rRNA gene did differ

significantly. Using phospholipid fatty acid profiles,

they also found differences between bacterial lipids in

the native and introduced genotypes suggesting

differences in the sulphate reducing communities

present. Another study in a common garden using

populations from the northeast, mid-Atlantic and Gulf

Coast, Bowen and Meyerson (unpublished data)

found reduced diversity of the active bacterial com-

munity in the North American native genotype relative

to the introduced genotypes reared under identical

conditions. They also found that under the same

conditions, native and introduced genotypes differed

in plant and soil chemistry that ultimately resulted in

reduced diversity among the active bacteria in native

genotypes relative to invasive genotypes.

Global change studies

Phragmites australis has proven to be a highly useful

species for studying the effects of global change on

vegetation. For example, Caplan et al. (2014) showed

a positive relationship between nitrogen availability,

length of the growing season and net primary produc-

tion for the introduced lineage in North America.

Similarly, in a growth chamber experiment, Mozdzer

and Megonigal (2013) found that under elevated CO2

and N, both native and introduced P. australis in North

America demonstrated higher CH4 emissions but

overall those from the introduced genotypes were

higher. They concluded that increased productivity,

such as when an invasive plant replaces native

communities, is likely associated with increased CH4

emissions. Salinity stress due to increased drought and

sea level rise is another expected effect of global

change. Eller et al. (2014) studied the European and

Mediterranean genotypes of P. australis and sug-

gested that for C3 species, global climate change may

mitigate salinity stress and facilitate invasion.

Research and funding

In the US, more than $120 billion USD are spent

annually on managing invasive species with much of

the spending occurring in the agricultural sector

(Pimentel et al. 2005). Phragmites australis is an

alternative summer host for the invasive aphid

Hyalopterus pruni that is a pest of Prunus species in

orchards (e.g., plums, cherrys, almonds, apricots;

Lozier et al. 2009). Hyalopterus pruni can vector

plant viruses such as plum pox virus (Isac et al. 1998).

Also, various species of rusts, smuts and rots that

attack P. australis are closely related and may be
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shared with various agricultural crops. Because P.

australis may negatively impact these orchard and

agricultural crops indirectly through their shared

natural enemies (i.e., apparent competition; Holt and

Lawton 1994), there is agricultural interest in this

species.

While funding amounts can be notoriously difficult

to track down, a search of the US National Science

Foundation database using the search term Phragmites

australis 12/16/2015 indicates more than two million

dollars in funding to date for research related to P.

australis. Martin and Blossey (2013) conducted a

survey of 285 land managers in the US to ascertain

economic costs associated with management and

control of P. australis. Their results showed that

between 2005 and 2009, more than $4 million per year

was spent on P. australis management. Although

controversial (Cronin et al. 2016, this issue), funding

for screening of biological control agents to manage P.

australis is also available. Recently, a request for

proposals (RFP Number: C-15-07) for up to $750,000

USD was issued by the New York Department of

Transportation (DOT) (http://files.ctctcdn.com/08b78

404201/13a45c32-5814-4869-8bb4-f2cee531dcab.pdf).

This was ‘‘phase 2’’ of what the New York DOT called,

‘‘Biological Control of Invasive Phragmites australis.’’

Presumably, funding for phase 1 was also made

available.

Conclusions

Because of the knowledge base that has been formed

over the last two decades, the ease with which research

can be conducted, the global nature of the P. australis

plant system, and the large number of active scientists

currently working on this system, collaborative

research is the next logical step. As P. australis has

become a de facto model system, a group of scientists

from all over the world have recently formed a

collaborative Phragmites Network research group

nicknamed PhragNet. PhragNet includes researchers

and students from North America, South America,

Europe, Asia, Australia and South Africa who are

developing synergistic research approaches for global

scale questions in ecology and biological invasions.

As noted by Kueffer et al. (2013), ‘‘More intensive

studies on particular model organisms and ecosystems

are needed to improve our understanding of the full

suite of interacting factors that influence invasions.’’

We assert that P. australis is a strong candidate for

fulfilling this need and also offers the ability to do

comparative studies across different system types and

genotypes in the field and in common garden studies to

test invasion theory and help inform predictions for the

future outcomes of global environmental change.
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Hulme P, Pyšek P, Jarošik V, Pergl J, Schaffner U, Vila M

(2013) Bias and error in understanding invasions and

impacts. Trends Ecol Evol 28:212–218

Hunter KL, Fox DA, Brown LM, Able KW (2006) Responses of

resident marsh fishes to stages of Phragmites australis

invasion in three mid Atlantic estuaries. Estuaries Coasts

29:487–498

Isac M, Preda S, Marcu M (1998) Aphid species–vectors of

plum pox virus. Acta Virol 42:233–234

Kiviat E (2013) Ecosystem services of Phragmites in North

America with emphasis on habitat functions. AoB plants

5:plt008

Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-

Lapierre M, Lillard E, McCormick MK, Nelson E, Torres

M, White J, Wilcox DA (2015) Advancing the science of

microbial symbiosis to support invasive species manage-

ment: a case study on Phragmites in the Great Lakes. Front

Microbiol 6:95. doi:10.3389/fmicb.2015.00095

Phragmites australis as a model organism for studying plant invasions 2429

123

http://dx.doi.org/10.1093/aobpla/plu020
http://dx.doi.org/10.1007/s10530-016-1137-y
http://dx.doi.org/10.1007/s10530-016-1138-x
http://dx.doi.org/10.1007/s10530-016-1138-x
http://dx.doi.org/10.1371/journal.pone.0046161
http://dx.doi.org/10.1007/s12237-013-9673-5
http://dx.doi.org/10.1007/s12237-013-9673-5
http://dx.doi.org/10.3389/fmicb.2015.00095
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C (2016) Biological Flora of the British Isles: Phragmites

australis. J Ecol (in review)

Parker JD, Torchin ME, Hufbauer RA, Lemoine NP, Alba C,

Blumenthal DM, Bossdorf O, Byers JE, Dunn AM,

Heckman RW, Hejda M, Jarošı́k V, Kanarek AR, Martin
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